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TECHNICAL NOTE D-240 

A NOTE ON THE I" VALLIE OF INDUCED VELOCITY FOR 

A HELICOPTER ROTOR 

By Harry H. Heyson 

SUMMARY 

A theoretical study shows the exact equivalence of momentum and 
vortex theory in the determination of the induced velocity at the rotor 
regardless of whether terms involving the sine of the azimuth angle are 
included in the blade circulation. It is shown that erroneous results 
may be incurred by failure to utilize a consistent set of assumptions in 
formulating the vortex-theory analysis. In particular, if the lateral 
dissymmetry on the rotor is represented by blade circulation which varies 
as the sine of the azimuth angle, it is then necessary to include the 
effect of the axial wake vorticity. 

INTRODUCTION 

Rotary-wing blade-element theory uses an interference velocity based 
upon the plausible momentum hypothesis offered in references 1 and 2. 
The only justification offered for this hy-pothesis was that in hovering 
the results coincided with those for a propeller, and that in high-speed 
forward flight the results coincided with those for a wing. 

The simple vortex theory (such as that given in ref. 3) lends some 
additional credence to the momentum theory since tile simple vortex t heo ry  
and momentum theory can be shown to lead to precisely the same induced 
velocity . 

A subsequent development of vortex theory (ref. 4), which attempts 
to account for dissynmetry of loading, yields a somewhat different result 
for the induced velocity. In this case, the induced velocity appears to 

. This 1 increase with tip-speed ratio according to the factor 
1 - - p  3 2  

2 
factor, of course, changes the induced velocity very little at current 
helicopter tip-speed ratios which a r e  of the order of 0.3; however, it 
could have a large effect when applied to perifomaxe calculations for 
autogyros and convertiplanes which operate at much higher values of tip- 
speed ratio. 



2 

This paper studies the  induced veloci ty  of a uniformly loaded ro tor  # 
i n  some d e t a i l  with par t icu lar  a t ten t ion  given t o  the  veloci ty  at t he  
center of the  rotor .  In  order t o  simplify the  f i n a l  comparison, t he  
momentum theory derivation is  a l so  given. Then the vortex-theory deriva- 
t ions ,  bo th  with symmetrical and asymmetrical circulation, are given, 
including f o r  the  first time, the  e f f ec t  of the  axial vo r t i c i ty  i n  the  
wake. Finally, the  correspondence between momentum and vortex theories  
i s  discussed. 

f 

The r e su l t s  indicate  t h a t  cer ta in  groupings of assumptions form 
consistent s e t s  when formulating the  vortex theory and t h a t  f a i l u r e  t o  
use a consistent set  may lead t o  s ign i f icant  errors .  

L 
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SYMBOLS 

vector distance from point i n  space t o  vortex element, f t  

number of blades 

rotor- thrust  coefficient,  
P f 1 2 ( m 2  

vector length of vortex element, f t  c 

uni t  direct ion vectors along X-, Y-, and Z-axes, respectively 

running coordinate along edge of wake, f t  

thrust moment f o r  blade, f t - l b  

a rb i t ra ry  point i n  space 

vector induced veloci ty  caused by a x i a l  component of vo r t i c i ty  

r ad ia l  distance t o  blade element, f t  

ro tor  radius, f t  

vector from origin t o  point on wake, f t  

ro tor  thrust, l b  

tangent ia l  component of resu l tan t  veloci ty  a t  blade element, A 
R r  + s i n  q, f t / s ec  
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forward velocity of rotor ,  f t / sec  

resu l tan t  veloci ty  a t  rotor,  f t / s ec  

induced velocity, posi t ive when directed upward, f t / s ec  

induced veloci ty  contribution of ax ia l  component of vor t ic i ty ,  
. I  

posi t ive when directed upward, f t / s ec  

induced veloci ty  contribution of circumferential ( vort  ex-r ing ) 
component of vor t ic i ty ,  posit ive when directed upward, f t / s ec  

Cartesian axes centered i n  rotor  

Cartesian coordinate system centered i n  rotor ,  x measured 
rearward, y l a t e ra l ly ,  and z upward, f t  

ro tor  tip-path-plane angle of attack, radians 

blade circulation, f t2/sec 

strength of constant pa r t  of blade circulat ion,  f t2/sec 

strength of s i n  Jr p a r t  of blade circulation, f t2/sec 

a small angle, radians 

ro tor  inflow ra t io ,  nondimensional component of veloci ty  
V s i n  a + w 

m 
perpendicular t o  ro tor  disk, 

ro to r  tip-speed r a t io ,  nondimensional component of veloci ty  
.I v cos a p a r a l l e l  t o  ro tor  disk, m 

mass density of air, slugs/cu f t  

wake skew angle, angle between axis  of wake and ro to r  t i p -  
path-plane axis, tan-1  ?, deg 

ro tor  azimuth angle, radians 

ro tor  ro ta t iona l  speed, radians/sec 
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MOMENTUM THEORY 

Momentum theory, as applied to helicopter rotors (refs. 1 and 2), 
assumes that the mass of air affected by the rotor is that which flows 
through a sphere (fig. 1) of radius 
The velocity at the rotor is 
induced velocities. This mass, per unit time, is 

R which is centered in the rotor. 
the resultant between the forward and V' 

L 
7 
E; 
A 

This mass is given a downward velocity of -2w at an infinite dis- 8 
tance along the wake, thus the thrust, which is equal to the time rate 
of change of momentum, is 

T = -2pfiR2V'w (1) 

Rewriting this equation yields 

-T 
w =  

2prrR2V 

which, in nondimensional terms, is 

r; 

c 

VORTEX THEORY 

ASSUMED WAKE SHAPE 

The wake assumed as a basis for the present vortex theory is shown 
for one blade in figure 2. The circulation I' along the blade is con- 
sidered as being radially uniform. (This restriction has been removed 
in the case of circular symmetry by ref. 5; however, the uniform circula- 
tion case considered herein yields values at the origin which are more 
nearly representative of the average induced velocity for the entire 

1 

r o t o r . )  Since the blade circulation is uniform, trailing vortices spring .a 
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only from the blade tip and the blade root. These vortices are assumed 
to be carried off uniformly with the velocity and direction of the mean 
flow V'. Thus, the tip vortex forms a spiral on the surface of a skewed 
elliptic cylinder, and the root vortex lies along the center line of this 
cylinder. 

At this point, the analysis is restricted to time-averaged induced 
velocities by assuming that the vortices are so closely spaced that they 
may be considered to form a continuous cylindrical sheet of vorticity. 
A s  in reference 3, this cylindrical sheet is now broken into its two 
components; one circumferential (vortex rings) and one axial. 
fig. 3 . )  
and 4 on the basis that its effect is small. 
ever, be considered in the present paper. 

(See 
The axial component of vorticity is neglected in references 3 

This component will, how- 

If, as in reference 4, the blade circulation and wake vorticity are 
allowed to vary with azimuth angle, the aforementioned vorticity will not 
be sufficient to describe the entire wake, since additional radial vor- 
ticity must now be shed from the trailing edge of the blades in order to 
compensate for the change in blade circulation. These radial vortices 
are illustrated in figure 4 for a simple case in which the blace circula- 
tion is uniformly increased over one sector of the rotor disk. In the 
present case, the blade circulation will be assumed to vary as sin \Ir, 
so that the radial vorticity will completely fill the wake cylinder and 
its strength will be proportional to cos $. 

STRENGTH OF CIRCULATION AND VORTICITY 

Blade Circulation 

With varyirg circulation.- Assume, as in reference 4, that the blade 
circulation is constant along the radius, but varies azimuthwise according 
to 

( 3 )  r = ro + rl sin $ 

Then, since 

dT = @TI' dr 
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the r o t o r  thrust will be 

Integrating equation (4b) yields 

or ,  nondimensionally, 

( 5 )  

L 
7 
F 

L 

The relation between I’o and rl is determined, as in reference 4, 
from the thrust moment, which is 

d 

Now, if only first harmonic flapping is significant, the first 
harmonic of the thrust moment must be zero (ref. 6); thus, from 
equation (7) 

3 
rl = - p wo 

so that, equation (6) becomes 
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and solving equations (8) and (9) for Po and Pl 

2CrpMR2 ro = 

1 2Crnl;trtRZ 

With only constant circulation.-  If ,  as i n  reference 3, the  circula-  
t i o n  w a s  constant (r1 = 0) ,  the corresponding r e s u l t s  would be 

and 

2CTMR2 

b 
ro = 

Central  Vortex 

The central  vortex on the center of the wake cylinder i s  formed by 
the  superposition of the root vortices of all blades; thus, i ts  circula-  
t i o n  s t rength i s  the  sum of blade bound vortex strengths.  

Circumferential Vort ic i ty  

With s i n  J/ circulation.-  The number of c i rcu lar  vortex elements 
formed per  un i t  time at  the rotor  disk i s  These elements a re  

car r ied  off with the  velocity mi-. Thus, the vo r t i c i ty  along 
the edge of the wake w i l l  be 

bS1/25r. 
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So that 

and 

- _ _  - 
- dl-0 dl-1 2Yt - - + - sin $ = (ro + rl sin +) dL dL 

L 
7 
5 a 

1 

With only constant circulation.- For the corresponding case of 
uniform circulation - 

Axial Vorticity 

High-speed forward flight is the only condition under which the 

term of reference 4 has a significant effect. Thus, in the 
1 - 2 p  

2 
present analysis, the axial vorticity will be considered only for the 
corresponding condition, 
directly rearward in the same plane as the rotor. This, as will be seen 
later, results in a major simplification of the analysis. 

X = go0, where the wake is assumed to flow 

The wake is shown in plan view at X = 90' in figure 5( a). The 
ii locus of the tip of any one blade as the rotor moves forward is a cycloid 

rather than a circle. Furthermore, relative to the rotor, the tip vortex 
also l i e s  on this cycloid. This is shown in the figure for one revolution 
starting at $ = z. If the shaded area of figure 5(a) is developed into I 
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a plane t r iangle ,  f igure 5(b) results. 
v o r t i c i t i e s  dT/d(R\lr) and W/dL are  i n  the  same proportion as the  
sides of the t r i ang le .  

The a x i a l  and circumferential  

Thus, t he  axial v o r t i c i t y  i s  

where dr'o/dL and dI'l/dL are given by equations (15) and (16). 

Radial Vorticity 

The strength of t he  r ad ia l  vo r t i c i ty  i s  simply the  der ivat ive of 
the s t rength  of the  circumferential vor t ic i ty ,  or 

INDUCED VELOCITY CONTRIBUTIONS OF THE VARIOUS 

COMPONENTS OF THE W A K E  

Blade Circulation 

Constant term.- In  f igure 6, consider any point P i n  t h e  space 
surrounding the ro tor  and also a plane which contains both t h i s  point  
and the  Z-axis. A t  some blade position, say 1, the  blade vortex induces 
a ve loc i ty  a t  P. In  the course of i t s  revolution the blade later passes 
the symmetrical posi t ion 2. Here it induces a ve loc i ty  equal and opposite 
t o  t h a t  which it induced when at 1. Considering a i l  symmetrical posi t ions 
it is  thus evident tha t ,  on a time-averaged bas is  (or  equally as w e l l ,  f o r  
an i n f i n i t e  number of blades) the contribution of constant blade circula-  
t i o n  i s  zero. 

Sin Jr term.- The argument f o r  the s i n  Jr term i s  ident ica l  t o  t h a t  
used i n  the  previous section, except that  P i n  figure 6 must now be 
considered as confined t o  the  Y-Z plane, about which s i n  Jr is  symmetrical. 
This plane, which includes the  center and the  l a t e r a l  axis ,  w i l l  have no 
induced veloci ty  caused by the s i n  JI blade circulat ion.  There w i l l  be 
an induced veloci ty  at  other points  on the  ro to r  disk.  These induced 
ve loc i t i e s  w i l l  be antisymmetric about the l a t e r a l  axis. 
s i n  
the disk,  as well as the induced velocity a t  the center,  is  zero. 

Thus, fo r  the  
pa r t  of the blade circulat ion,  the average induced ve loc i ty  over 
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symmetry theorems of reference 5 can be applied t o  show that 
(21) a l so  gives the average induced veloci ty  over t he  disk f o r  

uniformly loaded ro tor .  Notice that the sum of the  induced ve loc i t ies  
of points  located symmetrically about the lateral ax is  is  constant and 
equal t o  twice the  induced veloci ty  at the  lateral ax is .  Thus, the aver- 
age veloci ty  along any l i n e  i n  the  disk, p a r a l l e l  t o  the  longitudinal 
axis (that is, i n  t h e  direct ion of f l i gh t ) ,  is  equal t o  the induced veloc- 
i t y  at  the  intercept  of t h i s  l i n e  on the l a t e r a l  axis .  
induced veloci ty  on the lateral ax is  is uniform and equal t o  that a t  t he  
center of the rotor .  Thus, the  value of induced veloci ty  (eq. (22)) at  
the center i s  ident ica l ly  equal t o  the average over the e n t i r e  ro tor .  

However, the  

Radial Vorticity 

Choose a point P i n  the  X-Z plane ( f i g .  7) about which the  r a d i a l  
vo r t i c i ty ,  being proportional t o  cos J r ,  i s  symmetrical. Now consider 
the  v o r t i c i t y  i n  any plane through the w a k e  and p a r a l l e l  t o  t he  t i p  path 
plane. Observe t h a t  f o r  each r a d i a l  element of v o r t i c i t y  i n  t h i s  plane, 
say 1, there  is a corresponding element, 2, which exactly cancels the 
ve loc i ty  induced by 1 i n  the  X-Z plane. 
the  longitudinal plane i s  zero. Notice too, t h a t  the flow w i l l  be an t i -  
symmetric about the longitudinal axis so  that the net  contribution t o  the 
average induced veloci ty  is  a l so  zero. 

Thus, t h e  ve loc i ty  induced i n  

Axial Vorticity 

The induced veloci ty  contribution of the  ax ia l  v o r t i c i t y  may be 
found by using the  Biot-Savart l a w  and integrat ing over the  e n t i r e  wake; 
thus ,  

where ( see  f i g .  8) 

s = T(R COS + L) + ?(R s i n  I#) + E(o) 

dF = [7(1) + j ( 0 )  + k(OfldL 

a = i ( R  cos I# + L - x) + J(E s i n  $ - y )  + E(-z) - -  
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Substi tution of equations (24b) and (24c) in to  equation (23) yields a 
( f o r  the center of the  ro tor )  

- I - - 
i J k 

1 0 0 

( R  cos Jr + L) R sin Jr 0 dL d(RJr) 
dr - -  

( 2 5 )  dTa = d(R$) 
4 r r E R  cos Jr + L ) 2  + R2sin 4 312 L 

(eq. (18)). Therefore, the ve r t i -  
dL 

dr Note that - = ~(2 
d(RJr) 

7 
5 
8 

- 
tal (or  k )  component of induced veloci ty  i s  

Equation (26) may be integrated with respect t o  L by m e a n s  of _. 

i t e m  162 of reference 8. Thus, after inser t ing  the  limits of integrat ion 

which may be rewrit ten as 

2Yt 
dJr - -- ' m1 Lm(l + cos q)dI) (28) s i n  9 

4Yt dL 1 - cos 9 43t dL 

s i n  Jr 
Notice that i s  discontinuous a t  J/ = 0 and 2.x. There- 

1 - cos JI 
fore,  rewrite equation (28) as 



s- 

d 

The integrat ion w i t h  respect t o  $ i s  carr ied out with the  a id  of 
item 303 of reference 8 t o  y ie ld  

which becomes, a f t e r  the l imit ing process 

The induced veloci ty  due t o  axial  v o r t i c i t y  w i l l  be symmetrical 
about the longitudinal axis of the rotor and i t s  mean value i s  therefore  
not zero. Instead, a mean upwash i s  imposed upon the  ro tor .  T h a t  pa r t  
of the far wake caused by the  ax ia l  vor t ic i ty  i s  ident ica l  t o  the  wake 
of an e l l i p t i c a l l y  loaded (uniform downwash) wing. 
ve loc i ty  given by equation (31) will be the  average induced veloci ty  as 
well as  the  induced veloci ty  a t  t h e  center of the  ro tor .  

Thus, the induced 

TOTAL INDUCED VEMCITY AT CENTER OF ROTOR 

Uniform Loading 

For the case of uniform loading, where r1 = 0, it may be seen t h a t  
the  only portion of the wake  which contributes an induced veloci ty  at the  
center of the ro tor  is  the circumferential vo r t i c i ty .  
i t y  i s  given by equatioii ( 2 2 )  as 

This induced veloc- 

1 mo 
w = w c = - - -  2 d L  

o r  subs t i tu t ing  fo r  dI'o/dL from equation (17), 
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With Sin Jr Loading 

I n  the  case of s i n  9 loading there  w i l l  be an addi t ional  tern, 
given by equation (3 l ) ,  i n  the  induced veloci ty  at  the  center of the  
ro tor .  Thus, 

w = wc + wa 

and from equations (22) and (31) 

( 3 3 )  

I n  equation (34), subs t i tu te  the values of dTo dL and dTl dL I I 
from equations (15) and (16) t o  obtain 

1 
2 

- - CTm 
- + 

o r  

(35) 

L 
7 

b 

which, because of the symmetries previously discussed, w i l l  be the  average 
or  mean induced velocity,  fo r  the ro tor  as w e l l  as the induced veloci ty  
at  the  center of the ro tor .  

Notice t h a t  reference 4, which assumes a s i n  9 c i rcu la t ion  but  
which ignores ax ia l  vor t ic i ty ,  obtains only the f i r s t  term of equa- 
t i o n  ( 3 5 ) ,  or  

w = ,  \ (37)  1 

d 
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DISCUSSION 

CORRESPONDENCE OF THEORIES 

Comparison of equations (2),  (32), and (36) indicates tha t ,  regardless 
of whether or  not the  blade circulat ion is allowed t o  vary as s i n  $, 
vortex theory y ie lds  precisely the  same induced veloci ty  as momentum 

theory. The term , obtained in reference 4, i s  not as it has 
l - l p 2  

2 
often been described, a correction t o  account f o r  l a t e r a l  dissymmetry. 
Instead it i s  simply introduced by neglect of the  ax ia l  vo r t i c i ty .  

It w i l l  be noted tha t  equation ( 9 )  indicates  t h a t  inclusion of the  
l a t e r a l  dissymmetry ( s i n  
value of the constant c i rculat ion To. This e f fec t ,  however, i s  exactly 
counterbalanced by the reduction of downwash resu l t ing  from the axial 
vo r t i c i ty .  

term) has reduced the  t h r u s t  f o r  a given 

CONSISTENT SETS OF ASSUMPTIONS 

It would appear from the  analysis t h a t  there  i s  a considerable d i f -  
ference i n  t h e  manner i n  which cer ta in  assumptions i n  the development 
have been described. In  par t icu lar ,  the assumption t h a t  t he  vortex 
fi laments are very closely spaced on the wake cylinder has been i n  the  
past  interchangeably described as equivalent t o  an i n f i n i t e  t i p  speed 
o r  t o  an i n f i n i t e  number of blades. With i n f i n i t e  t i p  speed, the  for-  
ward and induced ve loc i t ies  are both negligible i n  comparison with the 
ro t a t iona l  speed. Thus, the  vortex filaments w i l l  l i e  essent ia l ly  as 
r ings on the  cylinder (as i n  f i g .  3(b)); F1 w i l l  approach zero; an& the 
axial component w i l l ,  indeed, be negligible. On the other hand, with am 
i n f i n i t e  number of blades, the forward and induced ve loc i t ies  a re  not 
negl igible .  Thus, rl does not approach zero, and the  vortex filaments 
l i e  on the  wake cylinder as  s p i r a l s  so t h a t  the  ax ia l  component of vor- 
t i c i t y  m u s t  be considered. The fa i lure  t o  use a consistent set of these 
assumptions can y ie ld  an incorrect resul t ,  as shown by equation (37). 
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LATERAL VARIATION OF INDUCED VEMCITY 
1 

J 
It w i l l  be noted t h a t  the present paper, under the s implif icat ions 

possible when considering only the center of the rotor ,  t r e a t s  cer ta in  
p a r t s  of the  wake by d i f fe ren t  techniques than those used i n  reference 4. 
For example, reference 4 assumes t h a t  the  combined ef fec t  of the  radial 
vor t i c i ty  may be found by superposing two smaller cylinders or iginat ing 

3 from a blade circulat ion of I'1 = k - @O 2 
It w i l l  be observed that the e f f ec t  of these two inner cylinders cancel 
exactly at  the  center of the rotor ,  j u s t  as the e f f ec t  of t h i s  pa r t  of 
the wake does i n  the present analysis.  Reference 4 progresses fur ther ,  
however, t o  obtain an approximation t o  the  lateral d is t r ibu t ion  of induced 

within the main wake ( f i g .  9 ) .  
L 
7 
5 
8 

velocity by numerically computing the  induced ve loc i t ies  at  
These numerical values were then used t o  determine a "slope" of induced 
velocity along the  l a t e r a l  axis .  It has since become evident, however, 
from the theorems of reference 5 ,  t h a t  i f  the external  f i e l d  of each of 
the smaller cylinders i s  neglected, then the induced veloci ty  across the  
lateral axis of e i the r  s m a l l  cylinder must be uniform. Thus, under the  
assumptions of reference 4, the var ia t ion of induced veloci ty  on the 
l a t e r a l  axis of the  rotor  should not have been l inear ,  but ra ther ,  almost * 
uniform on e i the r  side of  the center.  It w i l l  be noted, however, that 
components of the  wake other than those considered i n  t h i s  section a l so  

analysis is considered beyond the  scope of the  present paper. 

r/R = k0.75. 

have an effect  on the l a t e r a l  var ia t ion of induced velocity.  A complete 4 

CONCLUSIONS 

This study of the induced veloci ty  of a helicopter ro tor  has shown 
that : 

1. Momentum theory and vortex theory y i e ld  precisely the same value 
whether o r  not the blade circulat ion i s  allowed t o  vary a s  the s ine of 
the  azimuth angle. 

2. It i s  necessary t o  use a consistent set of assumptions i n  dealing 
w i t h  the induced velocity by means of vortex theory, i n  par t icu lar ,  i f  
the  l a t e r a l  dissymmetry of the  ro tor  i s  represented by blade c i rcu la t ion  
which varies as the  sine of the azimuth angle, it is  necessary t o  include 
the axial  component of vo r t i c i ty  i n  the  calculat ions.  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field,  Va., December 15, 1959. 
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Figure 2.- Schematic view of vortices in rotor wake. 
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Figure 6.- Sketch for determining effect of blade circulation on induced 
velocities. 
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Figure 9.- Vortex configuration used in reference 4 to represent the 
combined effect of radial and sin Jr circumferential vorticity. 
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